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1 Introduction 

Diffusion tensor imaging (DTI), as implemented in MRI (1,2), is a noninvasive imaging 

technique that can be used in order to probe, in vivo, the intrinsic diffusion properties of deep 

tissues. DTI has been applied in several studies to infer the microstructural characteristics of 

the brain (3-6), the heart (7-10), muscle tissue (11-13), bone marrow (14), intervertebral discs 

(15), and the spinal cord (16-18). Brain function (19,20) and development of human cerebral 

white matter in newborns (21-23) are also areas of research with growing interest in DTI. In 

addition, DTI may assist diagnosis of disease conditions such as cerebral ischemia (24-25), 

acute stroke (26,27), multiple sclerosis (28-30), schizophrenia (31) and traumatic brain injury 

(32,33). 

Unlike conventional diffusion imaging (DI) (34), where diffusion-weighted (DW) 

images are used to calculate an apparent scalar diffusion constant (ADC), DTI characterizes 

diffusive transport of water by an effective diffusion tensor D. This symmetric 3x3 tensor is 

of great importance since it contains useful structural information about the tissue. The 

eigenvalues of D are the three principal diffusivities and the eigenvectors define the local 



 

 
fiber tract direction field (1). Moreover, one can derive from D rotationally invariant scalar 

quantities that describe the intrinsic diffusion properties of the tissue. The most commonly 

used are the trace of the tensor (1, 3, 35), which measures mean diffusivity, Fractional 

Anisotropy (FA), Relative Anisotropy (RA) (3, 35, 36), Volume Ratio (VRat) and Lattice 

Index (LI) (36, 37), which all characterize the anisotropy of the fiber structure.  

Precision in the estimation of the elements of the diffusion tensor, and consequently of 

the scalar quantities derived from it, is crucial for many DTI studies. Examples of DTI 

applications that are particularly sensitive to any type of errors are: diagnosis of acute stroke 

using the trace of D (26,27), or white matter fiber tracking based on the eigenvectors and 

eigenvalues of D (38-43). The noise content of the MR signal affects the accuracy of DTI 

results. Noise existing in the acquired DW images propagates to the elements of the diffusion 

tensor D and to the scalar quantities that describe the diffusion properties of the tissue. In 

order to overcome this problem various acquisition schemes have been proposed with 

different combinations of DW gradient orientations, diffusion weightings and number of 

repetitions of each acquisition (44,45). Post processing noise reduction techniques (46), as 

well as high field magnets, have also been used to improve SNR. Head motion has also been 

a source of significant artifacts in DTI. Various pulse sequences have been developed in an 

attempt to eliminate motion related artifacts from DTI studies (47). An additional problem, 

originating from the high gradient amplitudes used in DTI, has been the eddy current 

artifacts. To minimize eddy currents special pulse sequences (48-51) and post processing 

algorithms (52,53) have been implemented.  

 



 

 

2 Data acquisition for DTI 

2.1 DTI pulse sequence 

The pulse sequence that is commonly used to acquire DTI data is a two-dimensional 

spin-echo sequence with an EPI acquisition window and a pair of DW gradients (Fig.1). The 

DW gradients are symmetrically positioned around the 180° RF pulse. Following the 90° 

pulse there is negligible loss of phase coherence until the first DW gradient is applied. 

 

 

          
Figure 1. Basic pulse sequence for DTI acquisition. The DW gradients are shown to be 

activated in all three directions and with maximum amplitude. In reality, during execution of 
the sequence the amplitudes of the DW gradients change relative to each other in order to 
sensitize diffusion in different orientations in three-dimensional space. The blips in the phase 
encoding gradient during readout are not visible due to their low amplitude. 
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This gradient produces a phase shift, which depends on the position of the protons in the 

direction of the applied DW gradient. After the first DW gradient is turned off there is again 

negligible loss of phase coherence. However, the protons change position while they diffuse. 

The 180° RF pulse inverts the phase shifts, and the second DW gradient produces phase 

shifts equal to those produced by the first DW gradient. If the protons would not diffuse then 

the second DW gradient, due to the presence of the 180° RF pulse, would undo the effect of 

the first DW gradient. Diffusion causes the refocusing to be incomplete. In voxels that 

exhibit high diffusion along the direction of the applied DW gradient, the intensity in the 

corresponding DW image is reduced compared to that of voxels with lower diffusivity along 

the same direction. Only the changes in position occurring between the two DW gradients are 

important and are equally weighted regardless of when they occur within this interval (54). 

Additionally, the time between the two DW gradients should be set according to the scale of 

diffusion under study. In other words, this interval cannot be infinitely small since the 

protons will not have enough time to reach the anatomical limits of diffusion and they will 

appear as they equally diffuse towards any direction (isotropic diffusion). On the other hand 

the time between the two DW gradients cannot be very large since, besides loss of signal due 

to T2 decay, the protons will significantly change position and the loss of signal due to 

incomplete refocusing will be massive.  

 

2.2 Acquisition schemes 

In the sequence described above, the diffusion weighting is determined by the amplitude 



 

 
of the total DW gradient G, where G = (Gx, Gy, Gz), the duration of the DW gradient lobes 

and their temporal spacing. To achieve the lowest possible TE, the amplitude of the DW 

gradients is maximized and their duration is minimized, maintaining at the same time the 

necessary diffusion weighting. By changing the amplitudes of the DW gradients in all three 

directions (readout, phase encoding, slice select) simultaneously, while keeping the 

amplitude of the total DW gradient G the same, it is possible to sensitize diffusion in any 

direction in three-dimensional space. Four different DTI acquisition schemes are shown 

below. These schemes employ different combinations of DW gradient orientations and the 

same diffusion weighting. Schemes a, b, c, d include 6, 11, 23, 46 DW gradient orientations 

respectively (Fig. 2). 

  

 

                  (a)            (b)                                (c)                                 (d) 
 
Figure 2. DW gradient orientations for acquisition schemes a, b, c, d. All vectors have unit 
length. Only half of the three-dimensional space is shown. 
 

 

3 Post processing for DTI 

3.1 Estimation of the effective diffusion tensor D 
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The primary goal of a DTI experiment is to estimate the elements of the effective 

diffusion tensor D in each voxel. The diffusion tensor is a symmetric 3x3 matrix of the form: 
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Thus, calculating the six elements Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, fully determines D.  

For the DTI experiment the following equation applies for each voxel: 
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where S is the DW signal intensity, S0 is the spin-echo signal when no diffusion gradient is 

applied, bij are elements of the b matrix (2) and Dij are elements of the diffusion tensor D. 

The b matrix is also a 3x3 matrix. For the gradient pulses that are commonly used in DTI 

pulse sequences simple analytic expressions can be derived for bij. For the trapezoidal DW 

gradients that are used in the pulse sequence described earlier, bij is given by: 

⎥
⎦

⎤
⎢
⎣

⎡ δε
−

ε
+⎟

⎠
⎞

⎜
⎝
⎛ δ

−∆δγ=
6303

GGb
23

2
ji

2
ij ,                                      [3] 

where γ is the gyromagnetic ratio of protons, δ is the time between the start of the initial 

ramp of a trapezoidal DW gradient and the end of its plateau, ∆ is the time between the initial 

rise of the first and second DW gradients, and ε is the rise time of the ramp. 

From Eq. [2], the system can be fully determined with acquisition of at least 6 non-

collinear DW orientations and an additional T2 image. This acquisition scheme is sufficient 

for a robust estimation of the diffusion tensor D. If more than 6 non-collinear directions are 



 

 
acquired, the system is overdetermined and can be solved using linear (eg. singular value 

decomposition) or non-linear (eg. Levenberg-Marquardt) approaches (55).  

 

3.2 Scalar invariants of D 

Eigenvalues and eigenvectors of D 

The corresponding eigenvalues λ1, λ2, λ3, and eigenvectors ε1, ε2, ε3 of the diffusion 

tensor D of a voxel can be derived by: 

    D εi = λ iεi      , i = 1, 2, 3 .                                              [4] 

Because D is symmetric and positive definite (1), its eigenvectors ε1, ε2, ε3 are orthogonal. 

The eigenvectors of D define the local fiber tract direction field and the corresponding 

eigenvalues are the effective diffusivities in these directions. 

 

Trace of D 

One rotationally invariant scalar quantity that can be derived from the diffusion tensor 

D, for each voxel, is the Trace (1, 3, 35). The Trace is equal to: 

Trace = λ1 + λ2 + λ3 = 3 <D>,                                           [5] 

where <D> is the mean diffusivity. 

 

Fractional anisotropy (FA) 



 

 
Another rotationally invariant scalar quantity that can be derived from the diffusion 

tensor D is the FA (3, 35, 36): 
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FA measures diffusion anisotropy of fiber structure. FA owes its name to the fact that it 

expresses the ratio of the anisotropic part of the diffusion tensor D over the total magnitude 

of the tensor. For any material:  

0 ≤ FA ≤ 1    .                                                      [7] 

The minimum value of FA can occur only in a perfectly isotropic medium. The 

maximum value can occur only when λ1 >> λ2 = λ3 (20).  

 

Relative anisotropy (RA) 

RA is also a rotationally invariant scalar quantity (3, 35, 36) that measures diffusion 

anisotropy of fiber structure. It is given by: 
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For an isotropic medium RA = 0. RA expresses the ratio of the anisotropic part of the 

diffusion tensor D over the isotropic part of D. 

 

 

Volume ratio (VRat) 



 

 
VRat is given by: 

  

VRat = 27 λ1λ2λ3

λ1 + λ2 + λ3( )3   .                                             [9] 

VRat is a rotationally scalar invariant quantity that measures diffusion anisotropy of fiber 

structure (37). VRat represents the volume of an ellipsoid whose semimajor axes are the 

three eigenvalues of D divided by the volume of a sphere whose radius is the mean 

diffusivity <D>. For an isotropic medium VRat = 1, and as anisotropy increases VRat 

approaches 0. This behavior is opposite than that of FA and RA which increase as anisotropy 

increases. Therefore, since VRat describes similar properties, maps of 1-VRat are usually 

constructed. 

 

Linearity 

High diffusion anisotropy can be achieved while the three eigenvalues define an oblate 

or a prolate diffusion ellipsoid. FA, RA and VRat cannot differentiate between the different 

shapes. In contrast, linearity is a rotationally scalar invariant quantity that increases as the 

diffusion ellipsoid becomes more prolate (56). Linearity is given by: 

321
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= .                                          [10] 

For an isotropic medium linearity = 0. As the diffusion ellipsoid becomes more prolate 

linearity approaches the value 1. 

 



 

 

Planar Index 

Planar index is a rotationally scalar invariant quantity that increases as the diffusion 

ellipsoid becomes more oblate (57). The value of the planar index is given by: 

 
Planar = 2

λ2 − λ3

λ1 + λ2 + λ3
                                            [11] 

For any material the value of the planar index ranges between 0 and 1. For a medium with λ1 

= λ2, and λ3 = 0, the planar index = 1. In contrast, if λ2 = λ3 the planar index becomes 0. 

 

Lattice Index 

For two neighboring voxels with diffusion tensors D and D', the tensor dot product is: 
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where λk, λs' and εk, εs' are the eigenvalues and eigenvectors of D and D' respectively. The 

tensor dot product between the anisotropic parts of the diffusion tensors can be written as: 
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For a reference voxel (ref) and an arbitrary neighboring voxel (N) the Lattice Index (LIN) 

(36,37) is defined as: 
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An average LI can be computed for each voxel by calculating LIN for the reference voxel and 

each of the eight, in plane, contiguous voxels, and then weighting their contributions 



 

 
according to their distance from the reference voxel: 
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where LIref is the average LI for the reference voxel and aN is a weighting factor which is 

equal to 1 for voxels that share a side with the reference voxel and 
2

1  for voxels that share 

a vertex with the reference voxel. 

LI is a local intervoxel anisotropy index. It ranges from 0, for isotropic media, to 1, for 

media with λ1≠0, λ2 = λ3 = 0. LI is proven (37) to lessen the effect of noise in the final 

diffusion anisotropy maps, without introducing the artifacts caused by averaging the signal 

intensity over the entire ROI. One potential disadvantage of using LI is that if spatial 

resolution is low then LI might be averaging information from very different types of tissue. 

 

4 Visualization of DTI results 

The following images were obtained from DTI scans performed on a clinical 1.5T GE 

scanner with high-speed gradients (40 mT/m maximum amplitude, 150 mT/m/msec slew 

rate). The DTI data acquisition and post-processing software were developed in our lab. The 

imaging parameters were TR = 4500ms, TE = 71.8ms, field of view = 24cm x 24cm, 21 

contiguous slices, 3mm slice thickness. The amplitude of the total diffusion gradient was 40 

mT/m and for the example shown below was applied in 46 non-collinear directions 

uniformly distributed in three-dimensional space. The duration of each DW gradient lobe 



 

 
was 21.3ms and their temporal spacing was 26.9ms. The effective diffusion weighting was 

b=1000 sec/mm2. T2 images with no diffusion weighting (b=0 sec/mm2) were also acquired 

at the beginning of the DTI scan. Echo planar readout was performed with a 128x128 image 

matrix and all images were reconstructed to a 256x256 matrix after zero filling. Therefore, 

the resultant voxel dimensions were 0.9375 x 0.9375 x 3 mm3. For the example shown 

below, all DW images (b=1000 sec/mm2) were acquired 2 times and the T2 images were 

repeated 14 times. The duration of the scan was 7 minutes and 57 seconds. 

Figure 3 shows examples of T2, DW, λ1, λ2, λ3, trace, FA, RA, LI, 1-VRat, linearity, 

planar index maps, for an axial slice of a healthy volunteer. 
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Figure 3. T2W (A), 2 of the 46 DW (B) and (C), λ1 (D), λ2 (E), λ3 (F), trace (G), FA (H), 
RA (I), LI (J), 1-VRat (K), linearity (L), planar (M) maps for an axial slice of a healthy 
volunteer. 

 

In regions with tightly packed white matter fibers (e.g. corpus callosum), the eigenvalue 

maps exhibit high intensities for λ1 and lower for λ2 and λ3 which is characteristic for very 

anisotropic diffusion of protons. In regions of high diffusion with no preferred direction (e.g. 

ventricles), the eigenvalue maps exhibit high intensities for λ1, λ2 and λ3 which are also 

almost equal to each other. Trace maps demonstrate high intensities for regions with high 

mean diffusivity (e.g. ventricles). Small differences exist in trace maps between gray and 

white matter since the mean diffusivity values for these two types of tissue are very similar to 

each other. FA and RA maps contain similar information with each other. They demonstrate 

high diffusion anisotropy for white matter structures and low anisotropy for gray matter and 

CSF. Regions like the corpus callosum, the left and right internal capsule, the left and right 

external capsule, the optic radiations and other major white matter fiber tracts exhibit the 

highest values of diffusion anisotropy. LI maps contain similar information with FA and RA 

maps but significantly less noise. Maps of 1-VRat contain similar information to FA, RA and 

K L M 



 

 
LI but with higher contrast. Linearity maps reveal the regions that are characterized by highly 

prolate diffusion ellipsoids. Planar maps demonstrate the regions characterized by oblate 

diffusion ellipsoids. 

Maps of quantities that measure diffusion anisotropy are essentially maps of white 

matter. However, they provide no information about the orientation of the white matter 

fibers. One way to display directional information is by assigning colors to specific directions 

in three-dimensional space and displaying maps in which each voxel is colored in accordance 

to the correspondence of colors and primary diffusion directions. In Absolute Value maps 

(58), the x, y, z directions are assigned red, green and blue colors respectively, and any other 

direction within the xyz octant is assigned a combination of red, green and blue. This means 

that each color appears once in each octant of three-dimensional space. Therefore, fibers with 

rotational or mirror symmetry appear to have the same color. The brightness of each voxel is 

finally scaled by its LI value. An example of an Absolute Value map is shown in Figure 4a. 

The correspondence of colors and directions is presented by the colored circle of Figure 4b. 

For axial slices, the colored circle should be thought of as a dome seen from underneath with 

the viewer standing at the center of the dome. Then, each color corresponds to a direction 

that is parallel to the axis that connects the viewer to the point on the surface of the dome 

with the same color. Therefore, the colored circle serves as a look-up table of primary 

diffusion directions.  

 



 

 

  

Figure 4. (a) Absolute Value map for an axial slice of a normal volunteer. (b) Color circle 
for Absolute Value map.  
 

6 Corrections in DTI acquisitions 

6.1 Contribution of imaging gradients to diffusion weighting 

Diffusion weighting in DW images is achieved by the use of diffusion gradients. 

However, diffusion and imaging gradients interact with one another, producing additional 

cross terms in the b factor (59). Therefore, the final b value is slightly higher than the 

expected value. If no correction is performed this can lead to an incorrect estimate of the 

diffusion coefficient.  
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6.2 Eddy current induced artifacts 

In DTI experiments, whenever a strong DW gradient is turned on or off, eddy currents 

are induced in conductive parts of the magnet bore and its surroundings. Residual eddy-

current-induced gradient fields during the echo-planar readout, cause geometric distortions in 

the phase encoding direction of DW images (shearing, scaling, translation). These geometric 

distortions produce misalignments between the individual DW images of the DTI dataset, 

which eventually lead to artifacts in the computed maps of the diffusion parameters.  

Different pulse sequences (48-51) and post-processing algorithms (52,53) have been 

implemented to minimize eddy current artifacts. A relatively simpler and effective approach 

to reduce eddy-current distortions is to register all DW images to the mean DW image for 

each slice, using a 2D registration algorithm. 
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